図形と計量 4 正弦定理 & 5 余弦定理 正弦定理

R を \triangle ABC の外接円の半径とすると, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$

解説

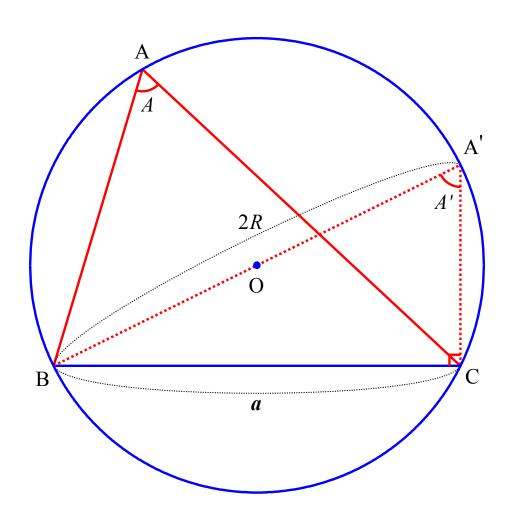
 $\frac{a}{\sin A}$ = 2R を導いてみる。(数学 A 平面図形の知識が必要)

A < 90° のとき

円周角の定理より $\angle A = \angle A'$ $\therefore \sin A = \sin A'$ ・・・①

 \angle A'CB は直径の円周角だから、 \angle A'CB = 90° \therefore sin $A' = \frac{a}{2R}$ ・・・②

①, ②より,
$$\sin A = \frac{a}{2R}$$
 $\therefore \frac{a}{\sin A} = 2R$

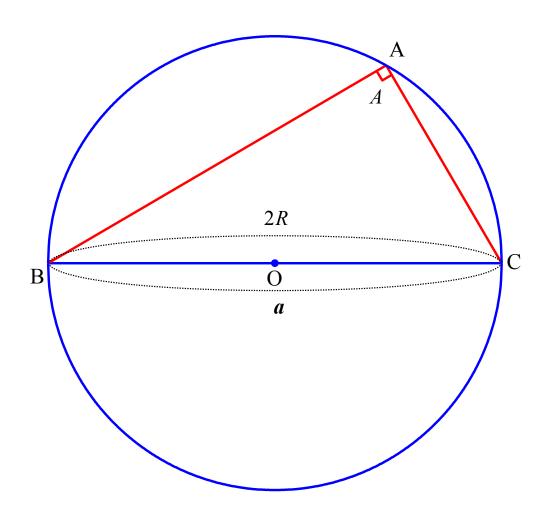


A = 90° のとき

三角比の拡張から、 $\sin A = \sin 90^{\circ} = 1$ ・・・③

$$2R = a \downarrow \emptyset$$
, $\frac{a}{2R} = 1$ ••• (4)

(3), (4)
$$\sharp$$
 b), $\sin A = \frac{a}{2R}$: $\frac{a}{\sin A} = 2R$

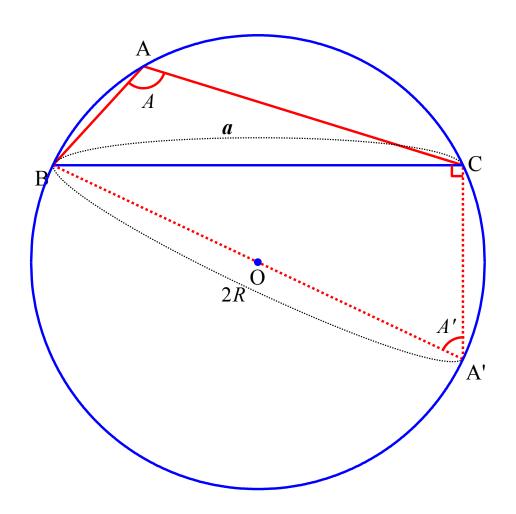


A>90°のとき

四角形 ABA'C は円に内接しているから、 $A=180^{\circ}-A'$ これと三角比の拡張から、 $\sin A = \sin(180^{\circ}-A') = \sin A'$ ・・・⑤

$$A' < 90^{\circ} \downarrow 0$$
, $\frac{a}{\sin A'} = 2R$ ••• 6

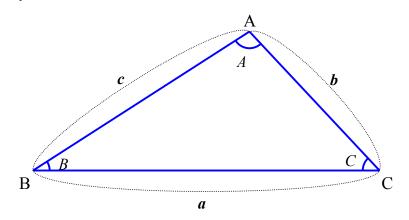
よって、⑤と⑥より、
$$\frac{a}{\sin A} = 2R$$



以上より、
$$\frac{a}{\sin A} = 2R$$
 が成り立つ。同様に、 $\frac{b}{\sin B} = 2R$ 、 $\frac{c}{\sin C} = 2R$ も成り立つ。

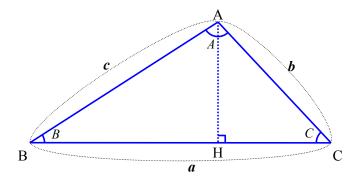
第1余弦定理(正射影の定理)

$$\begin{cases} a = b \cos C + c \cos B \\ b = a \cos C + c \cos A \\ c = a \cos B + b \cos A \end{cases}$$

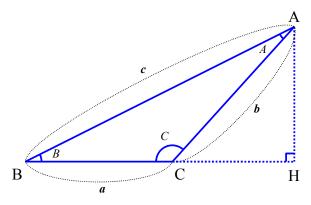


解説

 $a = c \cos B + b \cos C$ を導いてみる。



 \triangle ABH において BH = $c\cos B$ 、 \triangle ACH において CH = $b\cos C$ よって、 a=BH + CH = $c\cos B+b\cos C$



△ABH において BH = $c \cos B$, △ACH において CH = $b \cos (180^{\circ} - C) = -b \cos C$ よって, $a = BH + CH = c \cos B + b \cos C$

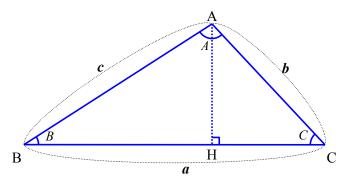
第2余弦定理(余弦定理)

$$\begin{cases} a^2 = b^2 + c^2 - 2bc \cos A \\ b^2 = c^2 + a^2 - 2ca \cos B \\ c^2 = a^2 + b^2 - 2ab \cos C \end{cases}$$

$$\begin{cases} \cos A = \frac{b^2 + c^2 - a^2}{2bc} \\ \cos B = \frac{c^2 + a^2 - b^2}{2ca} \\ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \end{cases}$$

解説

 $c^2 = a^2 + b^2 - 2ab\cos C$ を導いてみる。



△ABH において、三平方の定理より、

$$c^{2} = AH^{2} + BH^{2}$$

= $AH^{2} + (BC - CH)^{2}$
= $AH^{2} + (a - CH)^{2}$

ここで、 \triangle ACH に注目すると、 $AH = b \sin C$ 、 $CH = b \cos C$ よって、

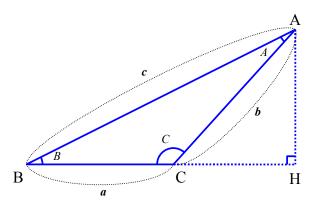
$$c^{2} = AH^{2} + (a - CH)^{2}$$

$$= (b \sin C)^{2} + (a - b \cos C)^{2}$$

$$= b^{2} \sin^{2} C + a^{2} - 2ab \cos C + b^{2} \cos^{2} C$$

$$= a^{2} + b^{2} (\sin^{2} C + \cos^{2} C) - 2ab \cos C$$

$$= a^{2} + b^{2} - 2ab \cos C$$



△ABH において、三平方の定理より、

$$c^{2} = AH^{2} + BH^{2}$$

= $AH^{2} + (BC + CH)^{2}$
= $AH^{2} + (a + CH)^{2}$

ここで、△ACH に注目すると、

$$AH = b \sin \angle ACH$$
$$= b \sin (180^{\circ} - C)$$
$$= b \sin C$$

$$CH = b \cos \angle ACH$$
$$= b \cos(180^{\circ} - C)$$
$$= -b \sin C$$

$$c^{2} = AH^{2} + (a + CH)^{2}$$

$$= (b \sin C)^{2} + \{a + (-b \cos C)\}^{2}$$

$$= (b \sin C)^{2} + (a - b \cos C)^{2}$$

$$= b^{2} \sin^{2} C + a^{2} - 2ab \cos C + b^{2} \cos^{2} C$$

$$= a^{2} + b^{2} (\sin^{2} C + \cos^{2} C) - 2ab \cos C$$

$$= a^{2} + b^{2} - 2ab \cos C$$

266

平行四辺形の性質より、 BC = AD = 5、 $\angle BAD = 180^{\circ} - 60^{\circ}$

AC の長さ

△ABC において、余弦定理より、

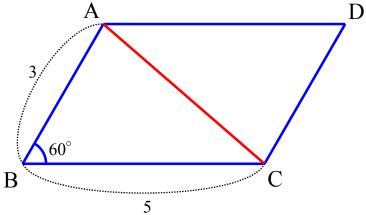
$$AC^{2} = AB^{2} + BC^{2} - 2AB \cdot BC \cos 60^{\circ}$$

$$= 3^{2} + 5^{2} - 2 \cdot 3 \cdot 5 \cdot \frac{1}{2}$$

$$= 9 + 25 - 15$$

$$= 19$$

 $\therefore AC = \sqrt{19}$



BD の長さ

△ABD において、余弦定理より、

$$BD^{2} = AB^{2} + AD^{2} - 2AB \cdot AD\cos(180^{\circ} - 60^{\circ})$$

$$= AB^{2} + AD^{2} - 2AB \cdot AD \cdot (-\cos 60^{\circ})$$

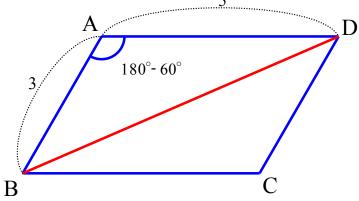
$$= AB^{2} + AD^{2} + 2AB \cdot AD\cos 60^{\circ}$$

$$= 3^{2} + 5^{2} + 2 \cdot 3 \cdot 5 \cdot \frac{1}{2}$$

$$= 9 + 25 + 15$$

$$= 49$$

∴ BD = 7



267

 \boldsymbol{C}

余弦定理より、
$$c^2 = a^2 + b^2 - 2ab\cos C$$

$$\exists h \geq 1, \quad c^2 = a^2 + b^2 - ab \neq 0, \quad a^2 + b^2 - 2ab \cos C = a^2 + b^2 - ab$$
 $\therefore \cos C = \frac{1}{2}$

ゆえに、
$$C=60^{\circ}$$

h

$$c^2 = a^2 + b^2 - ab$$
 に $a = 3$ $c = \sqrt{7}$ を代入すると、 $7 = 9 + b^2 - 3b$ すなわち $b^2 - 3b + 2 = 0$ よって、 $(b-1)(b-2)=0$ ∴ $b=1, 2$

