式と曲線3 双曲線

双曲線の標準形

焦点が x 軸上にある場合

2つの焦点をF(c,0), F'(-c,0)(c>0)とすると,

F, F'からの距離の差が2aとなる点P,

すなわち|PF - PF'| = 2a (a > 0)を満たす点 P(x, y)の方程式は,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 $\left(b^2 = c^2 - a^2, b > 0\right)$

焦点が v 軸上にある場合

2 つの焦点をF(0,c), F'(0,-c)(c>0)とすると,

F, F'からの距離の差が2bとなる点P,

すなわち|PF - PF'| = 2b(b > 0)を満たす点P(x, y)の方程式は,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$
 $\left(a^2 = c^2 - b^2, b > 0\right)$

焦点がx軸上にある双曲線の標準形の導き方

PF =
$$\sqrt{(x-c)^2 + y^2}$$
, PF' = $\sqrt{(x+c)^2 + y^2}$ $\downarrow y$,

$$\left| \sqrt{(x-c)^2 + y^2} - \sqrt{(x+c)^2 + y^2} \right| = 2a \qquad \therefore \sqrt{(x-c)^2 + y^2} - \sqrt{(x+c)^2 + y^2} = \pm 2a$$

$$= \pm 2a + \sqrt{(x+c)^2 + y^2} = \pm 2a + \sqrt{(x+c)^2 + y^2}$$

両辺を 2 乗し、整理すると $cx + a^2 = \pm a\sqrt{(x+c)^2 + v^2}$

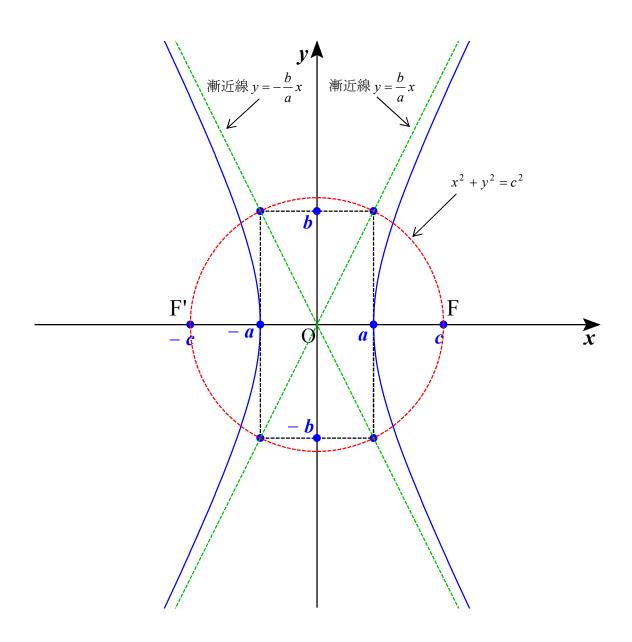
さらに両辺を 2 乗し、整理すると
$$(c^2-a^2)x^2-a^2y^2=a^2(c^2-a^2)$$
 :: $\frac{x^2}{a^2}-\frac{y^2}{c^2-a^2}=1$

ここで、P,F,F'は異なる3点だから、 $\Delta PFF'$ が成立する。

したがって、PF < FF' + PF'より、FF'(=2c) > |PF - PF'|(=2a)、すなわちc > a

よって,
$$c^2 - a^2 = b^2$$
 とおくと,

標準形
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
が得られる。



(1)

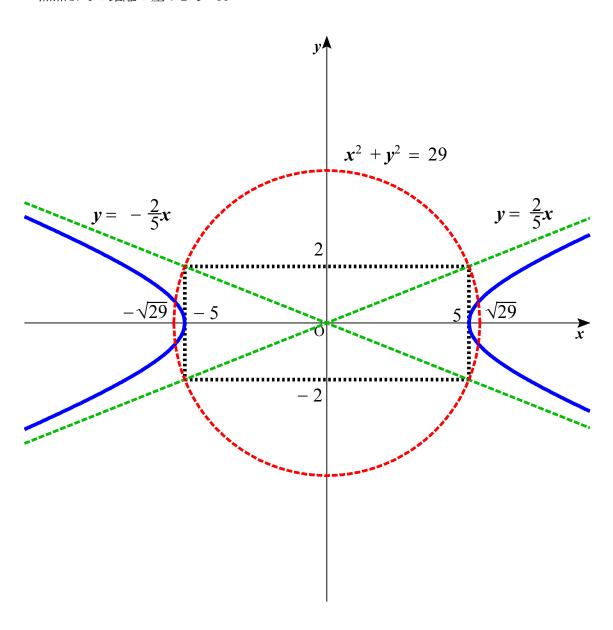
$$\frac{x^2}{5^2} - \frac{y^2}{2^2} = 1 \pm 9$$
,

頂点: (5, 0), (-5, 0)

焦点:
$$\left(\sqrt{5^2+2^2}, 0\right) = \left(\sqrt{29}, 0\right) \left(-\sqrt{5^2+2^2}, 0\right) = \left(-\sqrt{29}, 0\right)$$

漸近線: $y = \frac{2}{5}x$, $y = -\frac{2}{5}x$

焦点までの距離の差: 2.5=10



(2)

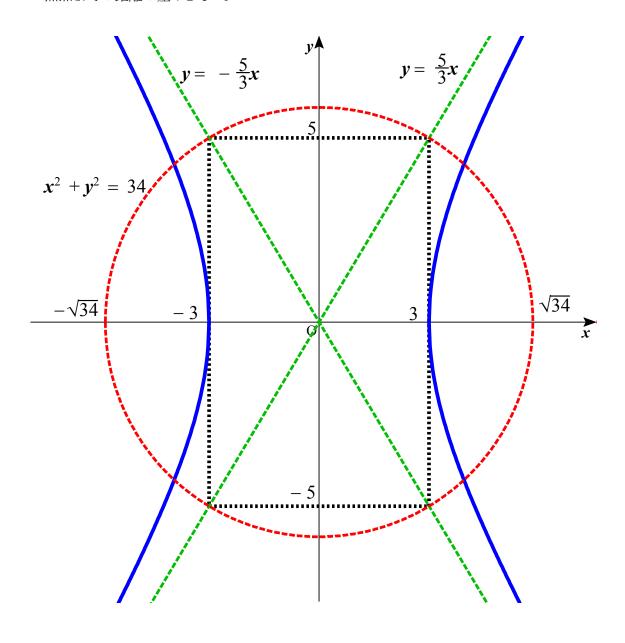
$$\frac{x^2}{3^2} - \frac{y^2}{5^2} = 1 \ \sharp \ \emptyset$$

頂点: (3, 0), (-3, 0)

焦点:
$$\left(\sqrt{3^2+5^2}, 0\right) = \left(\sqrt{34}, 0\right), \left(-\sqrt{3^2+5^2}, 0\right) = \left(-\sqrt{34}, 0\right)$$

漸近線: $y = \frac{5}{3}x$, $y = -\frac{5}{3}x$

焦点までの距離の差: 2·3=6



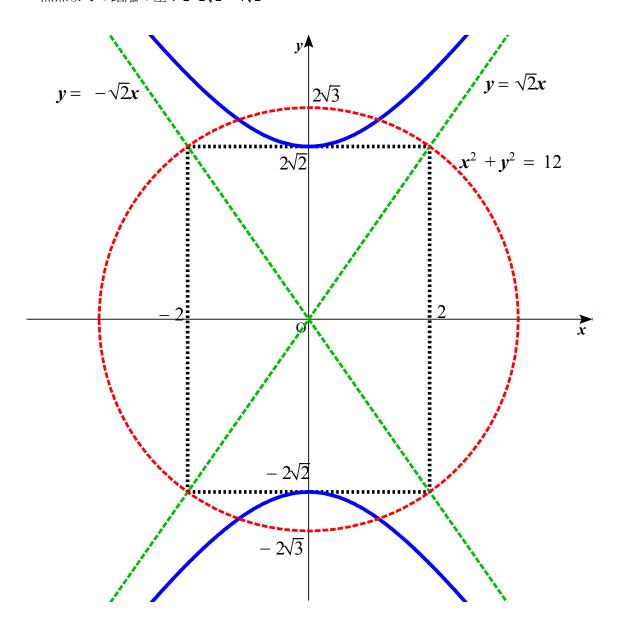
$$\frac{x^2}{2^2} - \frac{y^2}{\left(2\sqrt{2}\right)^2} = -1 \ \sharp \ \emptyset \ ,$$

頂点: $(0, 2\sqrt{2})$, $(0, -2\sqrt{2})$

焦点:
$$\left(0, \sqrt{2^2 + \left(2\sqrt{2}\right)^2}\right) = \left(0, 2\sqrt{3}\right) \left(0, -\sqrt{2^2 + \left(2\sqrt{2}\right)^2}\right) = \left(0, -2\sqrt{3}\right)$$

漸近線: $y = \frac{2\sqrt{2}}{2}x$, $y = -\frac{2\sqrt{2}}{2}x$ すなわち $y = \sqrt{2}x$, $y = -\sqrt{2}x$

焦点までの距離の差: $2 \cdot 2\sqrt{2} = 4\sqrt{2}$



(4)

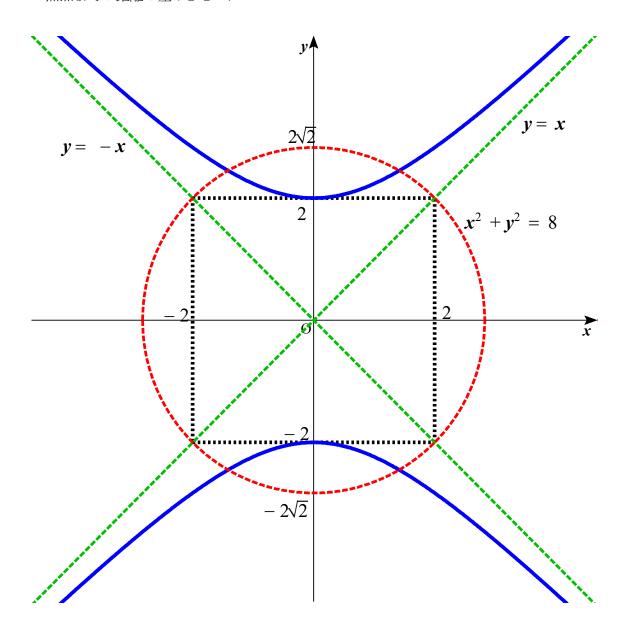
$$\frac{x^2}{2^2} - \frac{y^2}{2^2} = -1 \, \sharp \, \emptyset \,,$$

頂点: (0, 2), (0, -2)

焦点:
$$\left(0, \sqrt{2^2 + 2^2}\right) = \left(0, 2\sqrt{2}\right), \left(0, -\sqrt{2^2 + 2^2}\right) = \left(0, -2\sqrt{2}\right)$$

漸近線:
$$y = \frac{2}{2}x$$
, $y = -\frac{2}{2}x$ すなわち $y = x$, $y = -x$

焦点までの距離の差: 2·2=4



75 略解

(1)

双曲線の方程式を
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
とすると、 $a^2 + b^2 = 4^2$ 、 $2a = 4$ より、 $a^2 = 4$ 、 $b^2 = 12$ よって、 $\frac{x^2}{4} - \frac{y^2}{12} = 1$

(2)

解法1

双曲線の方程式を
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$
とすると、
$$a^2 + b^2 = 3^2$$
すなわち $a^2 + b^2 = 9$ $\therefore b^2 = 9 - a^2$ \cdot \cdot ①
$$\frac{4^2}{a^2} - \frac{5^2}{b^2} = -1$$
すなわち $25a^2 - 16b^2 = a^2b^2$ $\therefore -a^2b^2 + 25a^2 - 16b^2 = 0$ \cdot \cdot ② ①を②に代入し、 a について整理すると、 $a^4 + 32a^2 - 144 = 0$ $\therefore (a^2 - 4)(a^2 + 9) = 0$ これと①より、 $a^2 = 4$ 、 $b^2 = 5$ よって、 $\frac{x^2}{4} - \frac{y^2}{5} = -1$

解法2

双曲線の方程式を
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$
とすると、
$$a^2 + b^2 = 3^2$$
すなわち $a^2 + b^2 = 9$ ・・・①
$$2b = \sqrt{(4-0)^2 + (5-(-3))^2} - \sqrt{(4-0)^2 + (5-3)^2} = 2\sqrt{5}$$
 ∴ $b^2 = 5$ これと①より、 $a^2 = 4$ よって、 $\frac{x^2}{4} - \frac{y^2}{5} = -1$

(3)

条件より、
$$\left(\frac{1}{2},0\right)$$
、 $\left(-\frac{1}{2},0\right)$ を頂点とするから、
双曲線の方程式を $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad (a>0,b>0) \quad とすると、 $a^2 = \frac{1}{4} \quad \cdots \quad \mathbb{D}$
漸近線の傾きより、 $\frac{b}{a} = 2 \quad \therefore b^2 = 4a^2 \quad \cdots \quad \mathbb{D}$
①、②より、 $b^2 = 1$
よって、 $4x^2 - y^2 = 1$$

(4)

条件より、双曲線の方程式を
$$\frac{x^2}{a^2} - \frac{y^2}{a^2} = -1$$
 (a>0) とすると、

$$a^2 + a^2 = (\sqrt{6})^2 \pm 9$$
, $a^2 = 3$

よって、
$$\frac{x^2}{3} - \frac{y^2}{3} = -1$$
 すなわち $x^2 - y^2 = -3$

76

焦点の座標は
$$\left(\sqrt{a^2+b^2},\,0\right)$$
, $\left(-\sqrt{a^2+b^2},\,0\right)$

漸近線の方程式は
$$y = \frac{b}{a}x$$
, $y = -\frac{b}{a}x$ すなわち $bx - ay = 0$, $bx + ay = 0$

焦点
$$\left(\sqrt{a^2+b^2}, 0\right)$$
と漸近線 $bx-ay=0$ の距離:
$$\frac{\left|b\sqrt{a^2+b^2}-a\cdot 0\right|}{\sqrt{b^2+a^2}}=b$$

焦点
$$\left(\sqrt{a^2+b^2},0\right)$$
と漸近線 $bx+ay=0$ の距離:
$$\frac{\left|b\sqrt{a^2+b^2}+a\cdot 0\right|}{\sqrt{b^2+a^2}}=b$$

焦点
$$\left(-\sqrt{a^2+b^2}, 0\right)$$
と漸近線 $bx-ay=0$ の距離:
$$\frac{\left|b\cdot\left(-\sqrt{a^2+b^2}\right)-a\cdot 0\right|}{\sqrt{b^2+a^2}}=b$$

焦点
$$\left(-\sqrt{a^2+b^2}, 0\right)$$
と漸近線 $bx+ay=0$ の距離:
$$\frac{\left|b\cdot\left(-\sqrt{a^2+b^2}\right)+a\cdot 0\right|}{\sqrt{b^2+a^2}}=b$$

よって、焦点と漸近線の距離はいずれもb

$$\frac{x^2}{8} + \frac{y^2}{4} = 1$$
 の焦点を $(c, 0), (-c, 0)$ $(c > 0)$ とすると、 $8 = 4 + c^2$ ∴ $c = 2$

また,
$$\frac{2^2}{8} + \frac{p^2}{4} = 1$$
 より, $p = \pm \sqrt{2}$

よって、双曲線は(2,0), (-2,0)を焦点とし、点 $(2,\sqrt{2})$ を通る。

この双曲線の方程式を
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 ($a > 0, b > 0$) とすると,

点 $(2,\sqrt{2})$ と2つの焦点までの距離の差は2a だから,

$$\sqrt{\left\{2 - (-2)\right\}^2 + \left(\sqrt{2} - 0\right)^2} - \sqrt{(2 - 2)^2 + \left(\sqrt{2} - 0\right)^2} = 2a \quad \therefore a = \sqrt{2}$$

$$= h \geq a^2 + b^2 = 2^2 + b$$
. $b = \sqrt{2}$

よって、求める双曲線の方程式は
$$\frac{x^2}{2} - \frac{y^2}{2} = 1$$
すなわち $x^2 - y^2 = 2$

また、漸近線の方程式はy=x、y=-x

漸近線の方程式の別解

双曲線の方程式を
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 ($a > 0, b > 0$) とすると,

点
$$\left(2,\sqrt{2}\right)$$
を通るから、 $\frac{4}{a^2}-\frac{2}{b^2}=1$: $4b^2-2a^2-a^2b^2=0$ ・・・①

$$(2,0), (-2,0)$$
を焦点とするから、 $a^2 + b^2 = 2^2$ ∴ $b^2 = 4 - a^2$ ・・・②

②を①に代入し、
$$a$$
について整理すると、 $a^4-10a^2+16=0$: $(a^2-2)(a^2-8)=0$

②より、
$$a^2 = 2$$
とすると $b^2 = 2$ 、 $a^2 = 8$ とすると $b^2 = -4 < 0$ より不適

よって、双曲線の方程式は
$$\frac{x^2}{2} - \frac{y^2}{2} = 1$$
すなわち $x^2 - y^2 = 2$

解法1

$$\frac{x^2}{a^2} - \frac{y^2}{a^2} = 1$$
 より、漸近線は $x + y = 0$, $x - y = 0$ よって、 $P(s, t)$ とすると、

$$PQ \cdot PR = \frac{\left| s+t \right|}{\sqrt{1^2 + 1^2}} \cdot \frac{\left| s-t \right|}{\sqrt{1^2 + 1^2}}$$
$$= \frac{\left| s^2 - t^2 \right|}{2}$$
$$= \frac{\left| a^2 \right|}{2}$$
$$= \frac{a}{2}$$

解法 2

$$\frac{x^2}{a^2} - \frac{y^2}{a^2} = 1$$
 より、漸近線は $x + y = 0$, $x - y = 0$

点 P の x 座標を s とすると, P の座標は $\left(s, \sqrt{s^2 - a^2}\right)$ または $\left(s, -\sqrt{s^2 - a^2}\right)$

$$\left(s,\sqrt{s^2-a^2}\right)$$
 \mathcal{O} \succeq $\stackrel{*}{\underset{\sim}{=}}$

$$PQ \cdot PR = \frac{\left| s + \sqrt{s^2 - a^2} \right|}{\sqrt{1^2 + 1^2}} \cdot \frac{\left| s - \sqrt{s^2 - a^2} \right|}{\sqrt{1^2 + 1^2}}$$
$$= \frac{\left| a^2 \right|}{2}$$
$$= \frac{a}{2}$$

同様にして、
$$\left(s, \sqrt{s^2 - a^2}\right)$$
のときも $PQ \cdot PR = \frac{a}{2}$

よって、
$$PQ \cdot PR = \frac{a}{2}$$

$$P(x, y)$$
 とすると,

$$PA = \sqrt{(x-a)^2 + y^2}$$
, $PB = \sqrt{x^2 + (y-b)^2}$, $PC = \sqrt{(x+a)^2 + y^2}$, $PD = \sqrt{x^2 + (y+b)^2}$

$$PA \cdot PC = PB \cdot PD \downarrow \emptyset$$
,

$$\sqrt{(x-a)^2 + y^2} \cdot \sqrt{(x+a)^2 + y^2} = \sqrt{x^2 + (y-b)^2} \cdot \sqrt{x^2 + (y+b)^2}$$

両辺を2乗すると,

$${(x-a)^2 + y^2}/{(x+a)^2 + y^2} = {x^2 + (y-b)^2}/{x^2 + (y+b)^2}$$

両辺を展開すると.

$$(x^2 - a^2)^2 + y^2 (x - a)^2 + (x + a)^2 + y^4 = x^4 + x^2 (y - b)^2 + (y + b)^2 + (y^2 - b^2)^2$$

より.

$$x^4 - 2a^2x^2 + a^4 + 2x^2y^2 + 2a^2y^2 + y^4 = x^4 + 2x^2y^2 + 2b^2x^2 + y^4 - 2b^2y^2 + b^4$$

両辺を整理すると,

$$2(a^{2} + b^{2})x^{2} - 2(a^{2} + b^{2})y^{2} = (a + b)(a - b)(a^{2} + b^{2})$$

$$a>0$$
, $b>0$ より, $a^2+b^2\neq 0$ だから, 点 P の必要条件は $2x^2-2y^2=(a+b)(a-b)$

逆に
$$2x^2 - 2v^2 = (a+b)(a-b)$$
は点Pの条件を満たす。

よって,

a=bのとき

$$2x^2 - 2y^2 = 0$$
 \Rightarrow tab tab $2(x + y)(x - y) = 0$

よって,2 直線
$$x + y = 0$$
, $x - y = 0$

a≠bのとき

$$2x^2 - 2y^2 = a^2 - b^2$$
 すなわち双曲線 $x^2 - y^2 = \frac{a^2 - b^2}{2}$