微分法の応用 6 演習問題

53

(1)

$$y = x \cos x \pm 0$$
点 $(t, t \cos t)$ の接線が原点を通るとすると、 $y' = \cos x - x \sin x$ より、接線の方程式は $y = (\cos t - t \sin t)(x - t) + t \cos t$ 、すなわち $y = (\cos t - t \sin t)x + t^2 \sin t$ したがって、 $t^2 \sin t = 0$ よって、 $t^2 = 0$ または $\sin t = 0$ $t^2 = 0$ のとき $t = 0$ より、接線の方程式は $t = 0$ またい。 $t = 0$ とき、 $t = 0$ のとき $t = n\pi$ ($t = 0$ は整数) このとき、 $t = 0$ このとき、 $t = 0$ に $t = 0$ となるから、接線の方程式は $t = 0$ が偶数のとき $t = 0$ となるから、

(2)

$$f'(x) = -\frac{2(x-1)(x+2)}{(x^2+2)^2}$$
 より、増減表は次のようになる。
$$x \quad \cdots \quad -2 \quad \cdots \quad 1 \quad \cdots$$

よって、x = -2 のとき極小値 $-\frac{1}{2}$ 、x = 1 のとき極大値 1

(3)

$$f(x) = x \log x - 2x$$
 とすると、 $f'(x) = \log x - 1$ より、増減表は次のようになる。

$$x = 0 \cdots e \cdots$$

$$f'(x) / - 0 +$$

$$f(x) / \downarrow -e \uparrow$$

よって、最小値は-e

(4)

$$y' = 2x^{-3}e^{-x^{-2}} \downarrow 0$$
,

$$y'' = -6x^{-4}e^{-x^{-2}} + 4x^{-6}e^{-x^{-2}}$$
$$= -2x^{-6}e^{-x^{-2}}(3x^2 - 2)$$

よって, y''=0かつx>0を満たすx座標は $x=\frac{\sqrt{6}}{3}$ であり,

$$0 < x < \frac{\sqrt{6}}{3}$$
のとき $y'' > 0$, $\frac{\sqrt{6}}{3} < x$ のとき $y'' < 0$ となるから,

$$x = \frac{\sqrt{6}}{3}$$
 は変曲点の x 座標である。

54

$$f'(x) = \frac{e^{kx} (kx^2 - 2x + k)}{(x^2 + 1)^2}$$

ここで、
$$\frac{e^{kx}}{\left(x^2+1\right)^2} > 0$$
 より、 $f(x)$ が極値をもつためには、

 $kx^2 - 2x + k$ の値の正負が変化するようなx が存在すればよい。

すなわち、xの2次方程式 $kx^2-2x+k=0$ が異なる2実数解をもてばよい。

このとき、この 2 次方程式の判別式を D とすると、 D>0 より、 $\frac{D}{4}$ = $1-k^2>0$ となる。 これと条件 k>0 より、 0< k<1

$$P(0,t)$$
とおき、 $f(t) = AP + BP + CP$ とすると、 $f(t) = 2\sqrt{t^2 + 1} + |t - 1|$

【i】 *t* ≥1のとき

$$f(t) = 2\sqrt{t^2 + 1} + t - 1 \downarrow 0$$
, $f'(t) = \frac{2t + \sqrt{t^2 + 1}}{\sqrt{t^2 + 1}}$

f'(t) > 0より、f(t)は単調増加する。

よって、最小値は
$$f(1) = 2\sqrt{2}$$

【ii】 t < 1 のとき

$$f(t) = 2\sqrt{t^2 + 1} - t + 1 \pm 0$$
, $f'(t) = \frac{2t - \sqrt{t^2 + 1}}{\sqrt{t^2 + 1}}$

$$\frac{1}{\sqrt{t^2+1}} \neq 0$$
 だから、 $f'(t) = 0$ のとき $2t - \sqrt{t^2+1} = 0$ ∴ $2t = \sqrt{t^2+1}$

$$2t = \sqrt{t^2 + 1} \approx 5 t \pm (2t)^2 = (\sqrt{t^2 + 1})^2 \pm 0$$
, $3t^2 = 1$

よって、
$$2t = \sqrt{t^2 + 1}$$
 を満たす解の候補は $t = \pm \frac{1}{\sqrt{3}}$

このうち、
$$2t = \sqrt{t^2 + 1}$$
 を満たすのは $t = \frac{1}{\sqrt{3}}$

ゆえに、
$$2t = \sqrt{t^2 + 1}$$
 の解、すなわち $f'(t) = 0$ の解は $t = \frac{1}{\sqrt{3}}$

これより, $f(t) = 2\sqrt{t^2 + 1} - t + 1$ の増減は次のようになる。

よって、最小値は
$$f\left(\frac{1}{\sqrt{3}}\right) = 1 + \sqrt{3}$$

【1】と【2】の最小値を比較することにより、求めるPのy座標は $\frac{1}{\sqrt{3}}$ となる。

(1)

$$f'(x) = -\frac{(x+3)(x-1)}{x^4}$$
より、増減表は次のようになる。

よって、f(x)はx = -3のとき極小値 $-\frac{5}{27}$ をとる。

(2)

x=0 のとき, 左辺=1, 右辺=0 だから, x=0 は方程式の解でない。

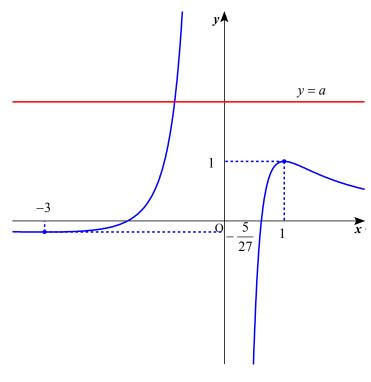
したがって、
$$a = \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x^3}$$
と変形でき、 $y = f(x) = \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x^3}$ とすると、

$$\lim_{x \to -0} f(x) = \infty, \quad \lim_{x \to +0} f(x) = -\infty, \quad \lim_{x \to -\infty} f(x) = 0, \quad \lim_{x \to \infty} f(x) = 0$$

これと(1)の増減表より、グラフは下図のようになる。

実数解は
$$y = a$$
 と $y = f(x) = \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x^3}$ の交点の x 座標だから,

実数解が 1 個であるときの,a のとりうる値の範囲は $a < -\frac{5}{27}$,1 < a



(1)

$$g(x) = \log(1+x) - \frac{x}{1+x}$$
 とおくと、 $gf(x) = \frac{x}{(1+x)^2} > 0$ より、 $x > 0$ のとき、 $g'(x) > 0$ これより、 $g(x)$ は $x \ge 0$ で単調増に加する。よって、 $g(x) > g(0) = 0$ ゆえに、 $x > 0$ のとき、 $\log(1+x) > \frac{x}{1+x}$

(2)

$$f'(x) = -\frac{1}{x^2} \left\{ \log(1+x) - \frac{1}{1+x} \right\} = -\frac{g(x)}{x^2}$$

(1)より、g(x)は $x \ge 0$ で単調に増加するから、f(x)はx > 0 で単調に減少する。

(3)

条件より、
$$f(a) > f(b)$$
が成り立つ。すなわち $\frac{\log(1+a)}{a} > \frac{\log(1+b)}{b}$
よって、 $\log(1+a)^b > \log(1+b)^a$ ∴ $(1+a)^b > (1+b)^a$

58

(1)

$$x > 0$$
 より, $\frac{x^2}{e^x} < \frac{6}{x} \Leftrightarrow x^3 < 6e^x \Leftrightarrow 6e^x - x^3 > 0$
したがって, $6e^x - x^3 > 0$ を証明すればよい。
 $f(x) = 6e^x - x^3$ とおくと, $f'(x) = 6e^x - 3x^2$, $f''(x) = 6e^x - 6x$, $f'''(x) = 6(e^x - 1)$

 $f(x)=6e^{-x}$ とおくと、 $f(x)=6e^{-3x}$ 、 $f(x)=6e^{-6x}$ 、 $f(x)=6e^{-1}$ x>0 のとき f''(x)>0 より、f'(x)は $x\ge0$ で単調に増加するから、f'(x)>f'(0)=6>0 これより、f'(x)は $x\ge0$ で単調に増加するから、f'(x)>f'(0)=6>0

よって, f(x) は $x \ge 0$ で単調に増加し, f(x) > f(0) = 6 > 0 : $6e^x - x^3 > 0$

(2)

$$x > 0$$
 のとき $0 < \frac{x^2}{e^x} < \frac{6}{x}$ および $\lim_{x \to \infty} \frac{6}{x} = 0$ より, $\lim_{x \to \infty} x^2 e^{-x} = 0$

59

$$f(x) = \log(\log x)$$
 とおくと、 $f(x)$ は $x > 1$ で微分可能で、 $f'(x) = \frac{1}{x \log x}$

したがって、平均値の定理より、
$$\frac{\log(\log q) - \log(\log p)}{q - p} = \frac{1}{c \log c} \quad (e \le p < c < q)$$

を満たす実数 c が存在し、e < c より、 $e \log e < c \log c$: $\frac{1}{e} < \frac{1}{c \log c}$

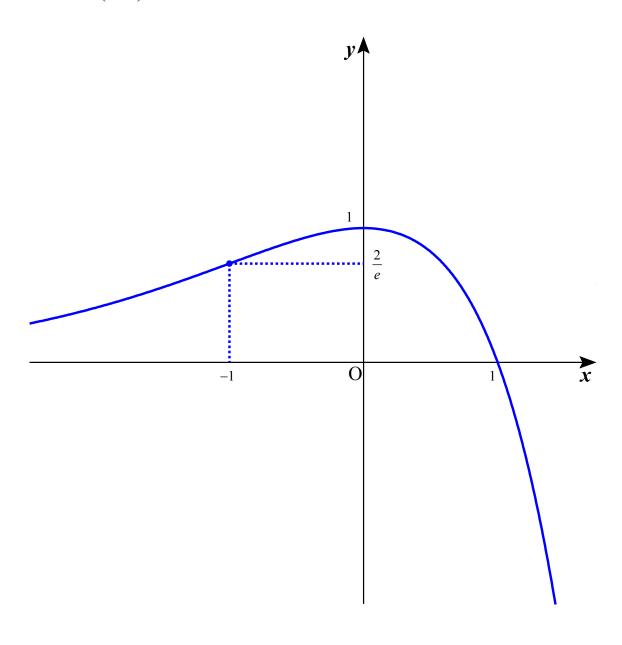
$$\label{eq:log_point} \ensuremath{ \begin{subarray}{l} \begin{s$$

(1)

$$f'(x) = -xe^x$$
, $f''(x) = -e^x(1+x)$ より, グラフの振る舞いは次のようになる。 x … -1 … 0 … $f'(x)$ + + + 0 — $f''(x)$ + 0 — — — $f(x)$ 个 0 …

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (1 - x)e^x = -\infty, \quad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (1 - x)e^x = 0$$

変曲点は $\left(-1,\frac{2}{e}\right)$, 極大点は $\left(0,1\right)$



(2)

接点を
$$(t,(1-t)e^t)$$
とすると、 $f'(t)=-te^t$ より、

接線の方程式は $v = -te^t(x-t) + (1-t)e^t$

この直線が点(a,0)を通るならば、 $0=-te^t(a-t)+(1-t)e^t$ より、

 $e^{t} \{t^{2} - (a+1)t + 1\} = 0$, すなわち $t^{2} - (a+1)t + 1 = 0$ を満たす実数tが存在する。

よって、接線の本数はtの2次方程式 $t^2-(a+1)t+1=0$ の実数解の数と一致する。

そこで、この方程式の判別式をDとすると、 $D=(a+1)^2-4=(a+3)(a-1)$ より、

接線の本数が2のとき

異なる2つの実数解をもつから、D>0より、a<-3,1<a

接線の本数が1のとき

重解をもつから、D=0より、a=-3,1

接線の本数が0のとき

実数解をもたないから、D<0より、-1<a<3

以上より,

a < -3.1 < a のとき 2 本、a = -3.1 のとき 1 本、-1 < a < 3 のとき 0 本

61

(1)

円の方程式は
$$(x-1)^2 + y^2 = 1$$
 点 $(1+t,s)$ はこの方程式を満たすから、 $\{(1+t)-1\} + s^2 = 1$ ∴ $s^2 = 1-t^2$ これと点 $(1+t,s)$ は第 1 象限にあることから、 $s>0$ より、 $s=\sqrt{1-t^2}$

(2)

$$(x-1)^2 + y^2 = 1 を x$$
 で微分すると,

$$\frac{d(x-1)^2}{dx} + \frac{dy^2}{dx} = 0 \iff \frac{d(x-1)^2}{dx} + \frac{dy^2}{dy} \frac{dy}{dx} = 0 \implies 0 \implies 0 \pmod{4} = 0$$

$$y \neq 0$$
 だから, $\frac{dy}{dx} = -\frac{x-1}{y}$

よって、点(1+t,s)における接線の方程式は $y = -\frac{(1+t)-1}{s}\{x-(1+t)\}+s$

この方程式を整理すると、 $sy = -tx + t + t^2 + s^2$

ここで、(1+t,s)は $(x-1)^2 + y^2 = 1$ を満たすから、 $t^2 + s^2 = 1$

ゆえに、tx + sy - t - 1 = 0

補足: 円の接線の公式を用いると,

点(1+t,s)における接線の方程式は、 $\{(1+t)-1\}(x-1)+sy=1$ より、tx+sy-t-1=0

点 A O y 座標が 0 であることと $t \neq 0$ から、点 A O x 座標は $x = \frac{1+t}{t}$

(3)

よって、
$$A\left(\frac{1+t}{t},0\right)$$
、 $B\left(0,\frac{1+t}{s}\right) = \left(0,\frac{1+t}{\sqrt{1-t^2}}\right)$ であり、

これより,

$$L = \sqrt{\left(\frac{1+t}{t}\right)^2 + \left(\frac{1+t}{\sqrt{1-t^2}}\right)^2}$$
$$= \sqrt{\frac{(1+t)^2}{t^2(1-t^2)}}$$
$$= \sqrt{\frac{1+t}{t^2(1-t)}}$$

(4)

$$f(t) = \frac{1+t}{t^2(1-t)}$$
 $(0 < t < 1)$ $\succeq \ddagger 3 < \succeq$, $f(t) > 0$, $L = \sqrt{f(t)} \ddagger 9$,

f(t)が最小となるとき、Lが最小となる。

したがって、f(t)が最小となるtの値を求めればよい。

$$f'(t) = \left\{ \frac{1+t}{t^2(1-t)} \right\}'$$

$$= \left(\frac{1+t}{t^2-t^3} \right)'$$

$$= \frac{(t^2-t^3)-(1+t)(2t-3t^2)}{(t^2-t^3)^2}$$

$$= \frac{2t^3+2t^2-2t}{t^4(1-t)^2}$$

$$= \frac{2(t^2+t-1)}{t^3(1-t)^2}$$

 $0 < t < 1 \, \text{L} \, \text{U}$

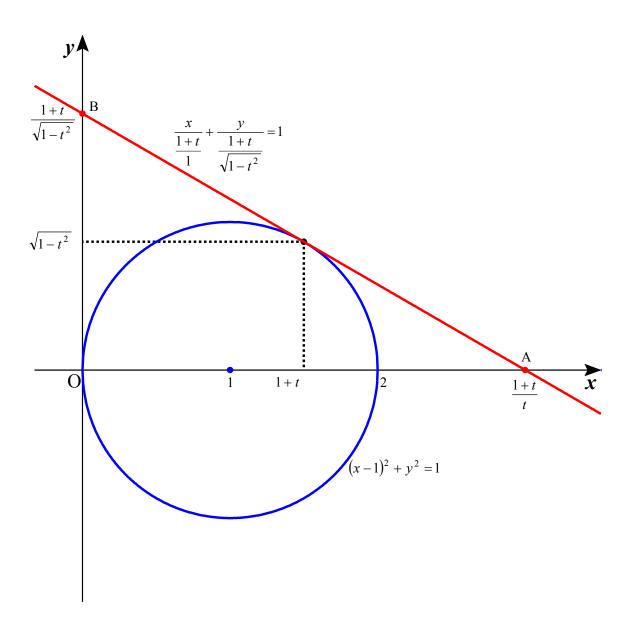
f'(t) = 0の解は、 $t^2 + t - 1 = 0$ の解であるから、

$$t^2 + t - 1 = 0$$
 を解くことにより, $t = \frac{-1 + \sqrt{5}}{2}$

また、f'(t)の正負も $t^2 + t - 1$ の正負で決まる。 よって、f(t)の増減は次のようになる。

$$\begin{array}{ccccc} t & 0 & \cdots & \frac{-1+\sqrt{5}}{2} & \cdots & 1 \\ f'(t) & / & - & 0 & + & / \\ f(t) & / & \downarrow & 極小 & \uparrow & / \end{array}$$

ゆえに、Lが最小となるtの値は $\frac{-1+\sqrt{5}}{2}$



$$f(x) = a \log(x+a) + \frac{a}{2}x^2 - x \ge 3 < \ge 3$$

与えられた方程式の個数は曲線y = f(x)とx軸との共有点の個数と等しいから、曲線y = f(x)とx軸との共有点の個数について調べればよい。

$$f'(x) = \frac{a}{x+a} + ax - 1$$
$$= \frac{ax\left(x+a-\frac{1}{a}\right)}{x+a}$$

より,

$$f'(x) = 0$$
 の解は $x = 0, -a + \frac{1}{a}$

これと f(x) の定義域が x+a>0 より、 x>-a (-a<0) だから、

$$a$$
の範囲を $0 < -a + \frac{1}{a}$, $0 = -a + \frac{1}{a}$, $-a + \frac{1}{a} < 0$ の3つの場合に分けて

f(x)の増減について調べることにする。

【i】
$$0 < -a + \frac{1}{a}$$
のとき

$$a > 0$$
 $\forall x > 0$ $0 < -a + \frac{1}{a}$ $\downarrow b$, $0 < a < 1$ \cdot \cdot ①

増減表は次のようになる。

よって.

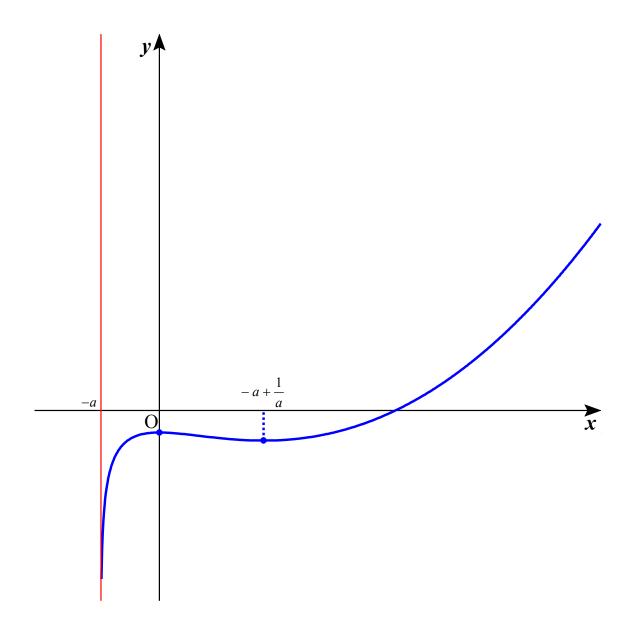
y = f(x)はx = 0で極大値 $f(0) = a \log a$ をとり、これと①より、f(0) < 0 また、

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left\{ a \log(x + a) + \frac{a^2}{2} x^2 - x \right\}$$

$$= \lim_{x \to \infty} \left\{ a \log(x + a) + \frac{a^2}{2} x^2 \left(1 - \frac{2}{a^2 x^3} \right) \right\}$$

$$= \infty$$

ゆえに、y = f(x)は $x > -a + \frac{1}{a}$ においてx軸とただ1つの共有点をもつ。



【ii】
$$0 = -a + \frac{1}{a}$$
のとき

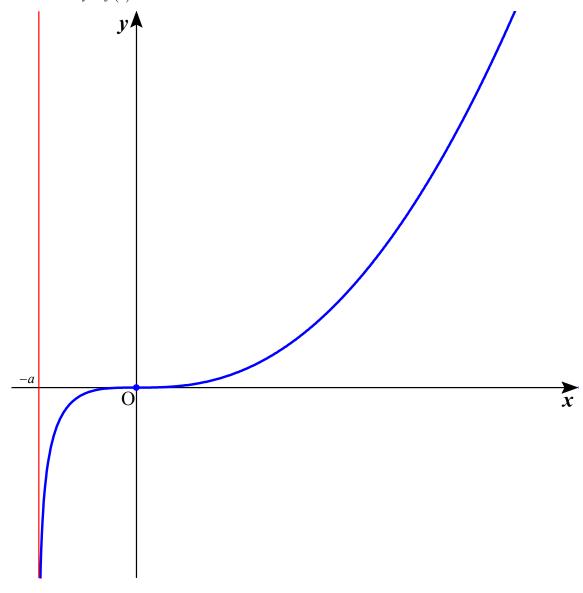
$$a > 0$$
 $\Rightarrow 0 = -a + \frac{1}{a} \downarrow \emptyset$, $a = 1$ $\cdot \cdot \cdot 2$

増減表は次のようになる。

よって、y = f(x)は定義域において単調に増加し、

$$f(x) = \log(x+1) + \frac{1}{2}x^2 - x \downarrow 0$$
, $f(0) = 0$

ゆえに, y = f(x)はx = 0においてx軸とただ1回だけ交わる。



[iii]
$$-a + \frac{1}{a} < 0$$
 \bigcirc \ge \ge

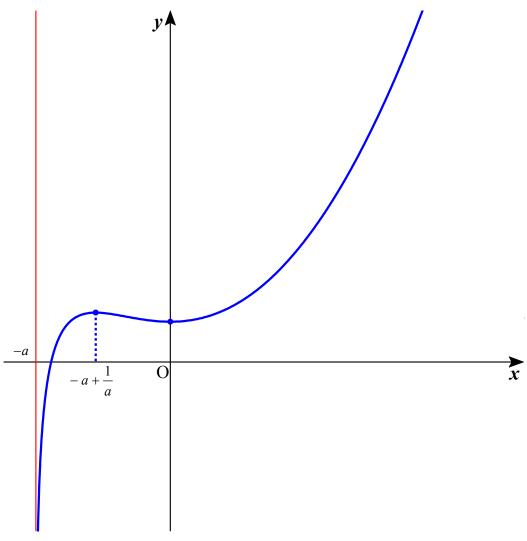
$$a>0$$
 かつ $-a+\frac{1}{a}<0$ より , $a>1$ ・・・②

増減表は次のようになる。

よって、y = f(x)はx = 0で極小値を $f(0) = a \log a$ をとり、これと②より、f(0) > 0

$$\sharp \not \sim, \quad \lim_{x \to -a+0} f(x) = \lim_{x \to -a+0} \left\{ a \log(x+a) + \frac{a^2}{2} x^2 - x \right\} = -\infty$$

ゆえに、y = f(x)は $-a < x < -a + \frac{1}{a}$ においてx軸とただ1つの共有点をもつ。



【i】~【iii】より、曲線y = f(x)はx軸とただ1つの共有点をもつ。 ゆえに、与式の方程式はただ1つの実数解をもつ。

63

(1)

$$f(x) = \log x$$
 とすると、 $f(x)$ は $x > 0$ で微分可能だから、
平均値の定理より、 $\frac{f(x+1) - f(x)}{(x+1) - x} = f'(c)$ $(x < c < x + 1)$ を、

すなわち log(x+1) - log x =
$$\frac{1}{c}$$
 (x < c < x + 1) ・・・①

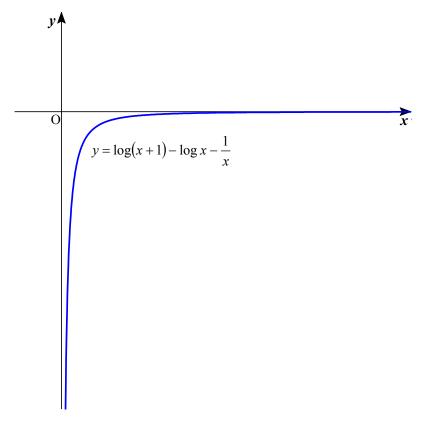
を満たす実数 c が存在する。

$$\sharp \mathcal{T}, \ x < c < x+1 \downarrow \emptyset, \ \frac{1}{x+1} < \frac{1}{c} < \frac{1}{x} \quad \cdot \quad \cdot \quad 2$$

よって、①、②より、
$$\log(x+1)-\log x < \frac{1}{r}$$
が成り立つ。

補足

$$f(x) = \log(x+1) - \log x - \frac{1}{x}$$
の増減から示してもよい。



$$g(x) = x \log x - (x-1)\log(x+1) \ge + 5 \ge$$
,

$$g'(x) = \log x + 1 - \log(x+1) - \frac{x-1}{x+1}$$
$$= -\{\log(x+1) - \log x\} + \frac{2}{x+1}$$

$$= = = (1) \pm 0, -\{\log(x+1) - \log x\} > -\frac{1}{x}$$

$$\therefore g'(x) > -\frac{1}{x} + \frac{2}{x+1} = \frac{x-1}{x(x+1)}$$

ゆえに, g(x)は $x \ge 1$ において単調に増加し, $g(x) \ge g(1) = 0$ より,

 $x \ge 1$ のとき $x \log x \ge (x-1)\log(x+1)$ が成り立つ。