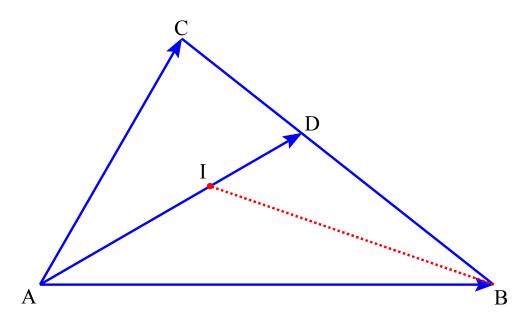
平面上のベクトル 5 位置ベクトル 位置ベクトル

任意の点 P の位置を定点 O を基準点とするベクトル \overrightarrow{OP} で表すとき、このベクトルを「O を基準点とする P の位置ベクトル」という。

座標系の原点を基準点に定めれば、 \overrightarrow{OP} の成分とPの座標が一致するので便利である。

50

解法1:内角の二等分線の性質を利用



∠A の二等分線と辺 BC の交点を D とすると、三角形の内角の二等分線の性質より、

BD : DC=AB : AC=8 : 5 $\cdot \cdot \cdot \cdot$

$$\sharp \supset \mathsf{T}, \quad \overrightarrow{AD} = \frac{5}{8+5} \overrightarrow{AB} + \frac{8}{8+5} \overrightarrow{AC} = \frac{5}{13} \vec{b} + \frac{8}{13} \vec{c} \quad \cdot \cdot \cdot ②$$

余弦定理より, $BC^2 = AB^2 + AC^2 - 2AB \cdot AC\cos 60^\circ = 8^2 + 5^2 - 2 \cdot 8 \cdot 5 \cdot \frac{1}{2} = 49$

 $\therefore BC = 7 \cdot \cdot \cdot 3$

①, ③
$$\sharp$$
 \emptyset , BD = $\frac{8}{8+5} \cdot 7 = \frac{56}{13}$ · · · ④

 $\triangle ABD$ の $\angle B$ の二等分線と AD の交点が I だから,

三角形の内角の二等分線の性質と④より,

$$\sharp \supset \mathcal{T}, \ \ \textcircled{3}, \ \ \textcircled{5} \not \downarrow \emptyset, \ \ \overrightarrow{AI} = \frac{13}{20} \left(\frac{5}{13} \vec{b} + \frac{8}{13} \vec{c} \right) = \frac{1}{4} \vec{b} + \frac{2}{5} \vec{c}$$

解法 2: 二等分線を単位ベクトルで表して解く

辺 AB 上に AE=1 を満たす点 E を、辺 AC 上に AF=1 を満たす点 E をとると、AE=AF だから、三角形の内角の二等分線の性質より、

∠A の二等分線は EF の中点を通る。

 \overrightarrow{AI} は実数 k を用いて、 $\overrightarrow{AI} = k \left(\frac{\vec{b}}{8} + \frac{\vec{c}}{5} \right) = \frac{k}{8} \vec{b} + \frac{k}{5} \vec{c}$ ・・・① と表せる。

余弦定理より,

$$BC = \sqrt{AB^2 + AC^2 - 2AB \cdot AC\cos 60^\circ} = \sqrt{8^2 + 5^2 - 2 \cdot 8 \cdot 5 \cdot \frac{1}{2}} = 7 \text{ Totals},$$

 \overrightarrow{BI} についても、同様に、実数1を用いて、

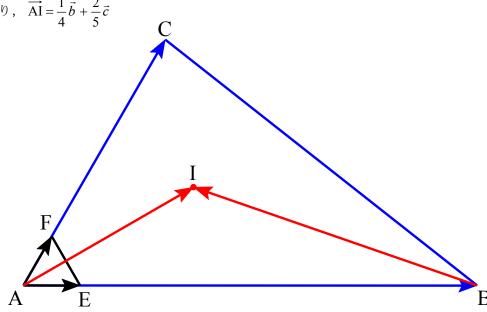
$$\overrightarrow{\mathrm{BI}} = m \left(\frac{\overrightarrow{\mathrm{BA}}}{\left| \overrightarrow{\mathrm{BA}} \right|} + \frac{\overrightarrow{\mathrm{BC}}}{\left| \overrightarrow{\mathrm{BC}} \right|} \right) = m \left(-\frac{\vec{b}}{8} + \frac{\vec{c} - \vec{b}}{7} \right) = m \left(-\frac{15}{56} \vec{b} + \frac{\vec{c}}{7} \right)$$
と表せる。

 \vec{b} と \vec{c} は互いに独立なベクトルだから、

①, ②より,
$$\frac{k}{8} = 1 - \frac{15}{56}m$$
, $\frac{k}{5} = \frac{m}{7}$

これを解くことにより, k=2

これと①より、
$$\overrightarrow{AI} = \frac{1}{4}\overrightarrow{b} + \frac{2}{5}\overrightarrow{c}$$



解法3:三角形の面積比を利用して解く

余弦定理より, BC =
$$\sqrt{AB^2 + AC^2 - 2AB \cdot ACcos60^\circ} = \sqrt{8^2 + 5^2 - 2 \cdot 8 \cdot 5 \cdot \frac{1}{2}} = 7$$

よって、内接円の半径をrとすると、 $\triangle IAB$ 、 $\triangle IBC$ 、 $\triangle ICA$ の面積比は

直線 AI と辺 BC の交点を D とすると,

辺 BC を共通底辺としたときの \triangle ABC と \triangle IBC の面積比は,

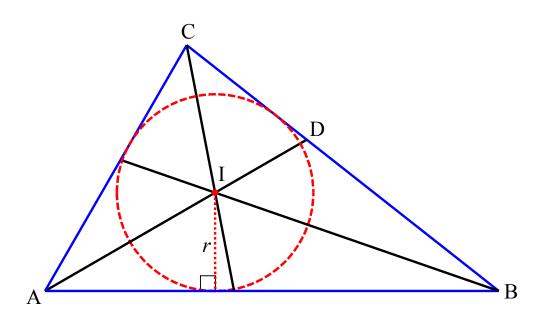
$$\triangle ABC : \triangle IBC = AD : ID \cdot \cdot \cdot ②$$

これより、
$$\overrightarrow{AI} = \frac{13}{20}\overrightarrow{AD}$$

ここで,

三角形の内角の二等分線の性質より、BD: DC=AB: AC=8:5 だから、

$$\overrightarrow{AD} = \frac{5}{8+5} \overrightarrow{AB} + \frac{8}{8+5} \overrightarrow{AC} = \frac{5}{13} \overrightarrow{b} + \frac{8}{13} \overrightarrow{c}$$



解法4:座標を利用して解く

$$A(0,0)$$
, $B(8,0)$ とし, C を第 1 象限にとると, $(5\cos 60^\circ, 5\sin 60^\circ) = \left(\frac{5}{2}, \frac{5\sqrt{3}}{2}\right)$

直線 AI の方程式を求める

 $\angle A$ の 2 等分線,すなわち直線 AI は原点を通り,傾きが $\tan 30^\circ = \frac{1}{\sqrt{3}}$ だから,

その方程式は
$$y = \frac{1}{\sqrt{3}}x$$
 ・・・①

△ABC の面積から内心の座標を求める

辺BCを底辺とすると、高さは点Cのy座標と等しいから、

$$\triangle ABC$$
 の面積= $\frac{1}{2} \cdot 8 \cdot \frac{5\sqrt{3}}{2} = 10\sqrt{3}$ ・・・②

また、余弦定理より、

$$BC = \sqrt{AB^2 + AC^2 - 2AB \cdot ACcos60^{\circ}} = \sqrt{8^2 + 5^2 - 2 \cdot 8 \cdot 5 \cdot \frac{1}{2}} = 7 \stackrel{>}{\sim} \stackrel{\sim}{\sim} \stackrel{>}{\sim} \stackrel{>}{\sim} \stackrel{>}{\sim} \stackrel{>}{\sim} \stackrel{\sim}{\sim} \stackrel{\sim$$

 \triangle ABC の内接円の半径をrとすると,

$$\triangle ABC$$
 の面積 = $\frac{1}{2}AB \cdot r + \frac{1}{2}BC \cdot r + \frac{1}{2}CA \cdot r$
= $\frac{1}{2}r(AB + BC + CA)$
= $\frac{1}{2}r(8 + 7 + 5)$
= $10r \cdot \cdot \cdot \cdot 3$

②, ③ よ り,
$$10r = 10\sqrt{3}$$
 : $r = \sqrt{3}$

Iのy座標は内接円の半径と等しいから、Iのy座標は $\sqrt{3}$ である。

これと①より、Iの座標は $I(3,\sqrt{3})$

ベクトルを求める。

$$\vec{b} = \begin{pmatrix} 8 \\ 0 \end{pmatrix}$$
より, \vec{b} の単位ベクトルは $\frac{\vec{b}}{|\vec{b}|} = \frac{\vec{b}}{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

$$\vec{c} = \begin{pmatrix} \frac{5}{2} \\ \frac{5\sqrt{3}}{2} \end{pmatrix}$$
より, \vec{c} の単位ベクトルは $\frac{\vec{c}}{|\vec{c}|} = \frac{\vec{c}}{5} = \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}$

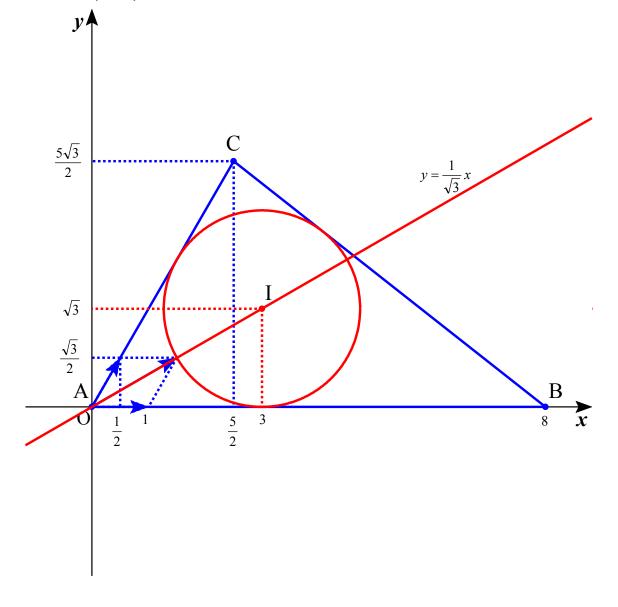
よって、 \overrightarrow{AI} は実数kを用いて、

$$\overrightarrow{AI} = k \left(\frac{\overrightarrow{b}}{8} + \frac{\overrightarrow{c}}{5} \right) = k \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix} \right\} = \begin{pmatrix} \frac{3}{2}k \\ \frac{\sqrt{3}}{2}k \end{pmatrix}$$
と表せる。

一方、
$$I(3,\sqrt{3})$$
より、 $\overrightarrow{AI} = \begin{pmatrix} 3 \\ \sqrt{3} \end{pmatrix}$ だから、

ゆえに.

$$\overrightarrow{AI} = 2\left(\frac{\vec{b}}{8} + \frac{\vec{c}}{5}\right) = \frac{1}{4}\vec{b} + \frac{2}{5}\vec{c}$$



51

A₁A₂,B₁B₂,C₁C₂の中点をそれぞれ L,M,N とすると,

$$\overrightarrow{OL} = \frac{\overrightarrow{OA_1} + \overrightarrow{OA_2}}{2} = \frac{\overrightarrow{b} + \overrightarrow{c}}{2} + \frac{\overrightarrow{a}}{2} = \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{4}$$

$$\overrightarrow{OM} = \frac{\overrightarrow{OB_1} + \overrightarrow{OB_2}}{2} = \frac{\overrightarrow{c} + \overrightarrow{a}}{2} + \frac{\overrightarrow{b}}{2} = \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{4}$$

$$\overrightarrow{ON} = \frac{\overrightarrow{OC_1} + \overrightarrow{OC_2}}{2} = \frac{\overrightarrow{a} + \overrightarrow{b}}{2} + \frac{\overrightarrow{c}}{2} = \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{4}$$

よって、点 O に対する点 L,M,N の位置ベクトルが一致する。 ゆえに、点 L,M,N、すなわち A_1A_2,B_1B_2,C_1C_2 の中点は一致する。

52

A を基準点とする B,C,G,P の位置ベクトルをそれぞれ \vec{b} , \vec{c} , \vec{g} , \vec{p} とすると,

$$\overrightarrow{AP} + \overrightarrow{BP} - 2\overrightarrow{CP} = \vec{p} + (\vec{p} - \vec{b}) - 2(\vec{p} - \vec{c}) = -\vec{b} + 2\vec{c}$$

$$3\overrightarrow{GC} = 3(\vec{c} - \vec{g}) = 3(\vec{c} - \frac{\vec{b} + \vec{c}}{3}) = -\vec{b} + 2\vec{c}$$

よって、
$$\overrightarrow{AP} + \overrightarrow{BP} - 2\overrightarrow{CP} = 3\overrightarrow{GC}$$

53

A を基準点とする B,C,P の位置ベクトルをそれぞれ \vec{b} , \vec{c} , \vec{p} とする。

(1)

$$-\vec{p} + (\vec{b} - \vec{p}) + (\vec{c} - \vec{p}) = \vec{b}$$
 $\therefore \vec{p} = \frac{1}{3}\vec{c}$

したがって, 点 P は辺 AC を 1:2 に内分する点

(2)

$$\vec{p} + (\vec{p} - \vec{b}) + (\vec{p} - \vec{c}) = \vec{0}$$
 $\therefore \vec{p} = \frac{\vec{b} + \vec{c}}{3}$

したがって、点 P は \triangle ABC の重心

(3)

$$-\vec{p} + (\vec{c} - \vec{p}) = \vec{c} \quad \therefore \vec{p} = \vec{0}$$

したがって、点 P は点 A と一致

54

A を基準点とする B,C,P の位置ベクトルをそれぞれ \vec{b} , \vec{c} , \vec{p} とする。

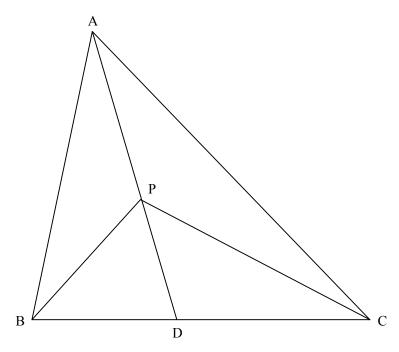
(1)

$$5\vec{p} + 4(\vec{p} - \vec{b}) + 3(\vec{p} - \vec{c}) = \vec{0}$$
 より $, 12\vec{p} = 4\vec{b} + 3\vec{c}$ よって $,$

$$\vec{p} = \frac{4}{12}\vec{b} + \frac{3}{12}\vec{c}$$
$$= \frac{7}{12} \left(\frac{4}{7}\vec{b} + \frac{3}{7}\vec{c} \right)$$

ゆえに、辺BCを3:4に内分する点をDとすると、点PはADを7:5に内分する点

(2)



 \triangle ABC の面積を 1 とすると,

AB: PD=12:5より,

$$\triangle$$
PBC の面積= \triangle ABC の面積× $\frac{5}{12} = \frac{5}{12}$ ・・・①

よって、 $\triangle PAB$ の面積 + $\triangle PCA$ の面積 = $\triangle ABC$ の面積 - $\triangle PBC$ の面積 = $1 - \frac{5}{12} = \frac{7}{12}$

これと, △PABの面積: △PCAの面積=BD: CD=3:4より,

$$\triangle PAB$$
 の面積 = $\frac{7}{12} \times \frac{3}{3+4} = \frac{3}{12}$ ・・・② $\triangle PCA$ の面積 = $\frac{7}{12} - \frac{3}{12} = \frac{4}{12}$ ・・・③

①, ②, ③ \sharp ϑ , \triangle PBC: \triangle PCA: \triangle PAB=5:4:3

他に,

△PBD の面積を 1 とすると,

BD: DC=3:4より、
$$\triangle$$
PCDの面積= \triangle PBDの面積× $\frac{4}{3} = \frac{4}{3}$

$$\triangle$$
PBC の面積= \triangle PBD の面積+ \triangle PCD の面積= $1+\frac{4}{3}=\frac{7}{3}$

$$\triangle$$
PCA の面積= \triangle PCD の面積× $\frac{7}{5} = \frac{4}{3} \times \frac{7}{5} = \frac{28}{15}$

$$\triangle PAB$$
 の面積= $\triangle PBD$ の面積× $\frac{7}{5} = \frac{7}{5}$

よって、
$$\triangle PBC : \triangle PCA : \triangle PAB = \frac{7}{3} : \frac{28}{15} : \frac{7}{5} = 35 : 28 : 21 = 5 : 4 : 3$$

など