
46. 分子運動論

(2)

AC は直径だから、 \triangle ABC は \angle B=90° の直角三角形である。 よって、AB= $2r\cos\theta$

また、時間tの間の衝突回数をn(nは実数)とすると、 $n \cdot 2r \cos \theta = vt$ より、 $n = \frac{vt}{2r \cos \theta}$

(3)

ある分子が 1 秒間に器壁に与える力積は $2mv\cos\theta\cdot\frac{v}{2r\cos\theta}$:: $\frac{mv^2}{r}$ また,その分子が 1 秒間に器壁に与える力の平均値を \bar{f} とすると,その力積は $\bar{f}\cdot 1$:: \bar{f} よって, $\bar{f}=\frac{mv^2}{r}$

したがって,N個の分子が器壁に与える力の平均値を \overline{F} とすると, $\overline{F} = \frac{Nmv^2}{r}$ また,気体が器壁におよぼす圧力の平均を \overline{P} とすると, $\overline{P} = \frac{\overline{F}}{4\pi r^2} = \frac{Nmv^2}{3 \cdot \frac{4\pi r^3}{3V}} = \frac{Nmv^2}{3V}$