39. 単振動

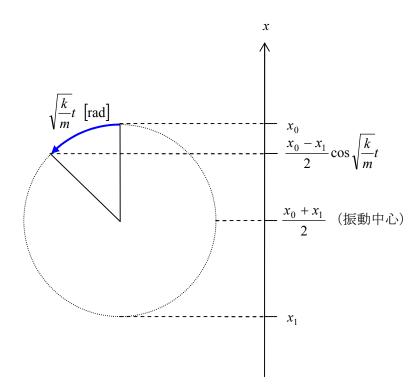
(3)

振幅
$$x_0 - \frac{x_0 + x_1}{2} = \frac{x_0 - x_1}{2}$$
, 角振動数 $\sqrt{\frac{k}{m}}$ の単振動であり,

等速円運動と対応させると下図のようになるから,

時刻tにおける物体 M の振動中心からの変位は $\Delta x = \frac{x_0 - x_1}{2} \cos \sqrt{\frac{k}{m}} t$

よって,時刻tにおける物体 M の速度は $v = \frac{dx}{dt} = -\frac{x_0 - x_1}{2} \sqrt{\frac{k}{m}} \sin \sqrt{\frac{k}{m}} t$



補足

$$x = \frac{x_0 + x_1}{2} + \Delta x = \frac{x_0 + x_1}{2} + \frac{x_0 - x_1}{2} \cos \sqrt{\frac{k}{m}}t$$

(5)

左へ滑るときの振動中心の位置を
$$x_{\rm C}$$
とすると, $x_{\rm C} = \frac{x_0 + x_1}{2} = \frac{3.5d + \left(-2.5d\right)}{2} = 0.5d$ また,その運動方程式は, $ma = \mu mg - kx$ 振動中心 $x_{\rm C}$ では $a = 0$ だから, $0 = \mu mg - kx_{\rm C} = \mu mg - k \cdot 0.5d$ ∴ $\mu mg = 0.5kd$ 右へ滑るときの運動方程式は, $ma = -kx - \mu mg$ 振動中心を $x_{\rm C}$ 'とすると,振動中心 $x_{\rm C}$ 'では $a = 0$ だから, $0 = -kx_{\rm C}$ '- μmg これと $\mu mg = 0.5kd$ より, $x_{\rm C}$ '= -0.5d