ケプラーの第2法則と角運動量保存則

A. 面積速度

面積速度とは

平面内に定点 O と動点 P があるとき,

定点 O と動点 P を結ぶ線分 OP (「動径 OP」という) が単位時間に描く面積を「動点 P の定点 O に関する<mark>面積速度の大きさ</mark>」という。

定点のまわりを回る面積速度の導き方

導き方 1 $\vec{v}(t) + \Delta t), y(t + \Delta t))$ $\vec{v}(t)$ A(x(t), y(t)) $\vec{r}(t)$

動点 P が xy 座標平面上を時刻 t から $t + \Delta t$ の間に,

点 A(x(t), y(t))から点 $A'(x(t + \Delta t), y(t + \Delta t))$ まで移動するとする。

ここで、点 A における点 P の定点 O に関する面積速度の大きさを求める目的で、

 Δt を無限小にした極限 ($\Delta t \rightarrow 0$) をとると,

$$\lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{(t + \Delta t) - t} = \frac{dx}{dt}, \quad \lim_{\Delta t \to 0} \frac{y(t + \Delta t) - y(t)}{(t + \Delta t) - t} = \frac{dy}{dt}$$

よって、点 A における動点 P の速さをv(t) とすると、

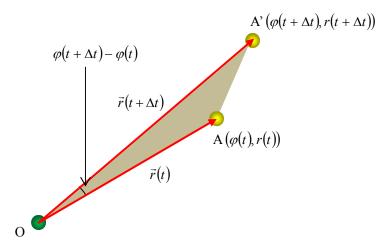
$$v(t) = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$
 (補足 $\int_t^{t+\Delta t} v(t) dt$ は A から A'までの道のりを表す)

また、その運動の向きは、 $\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{dy}{dx}$

ここで、点 A における動点 P の運動の向きと動径 $\vec{r}(t)$ のなす角を θ 、 $|\vec{r}(t)| = r(t)$ とおくと、点 A における動点 P の定点 O に関する面積速度の大きさ h(t) は、

$$h(t) = \frac{1}{2}r(t)v(t)\sin\theta$$
 ••••

導き方2



 Δt を無限小にした極限($\Delta t \to 0$)をとると、AA'は直線と見なしてよいので、 $A(\varphi(t),r(t))$ 、 $A'(\varphi(t+\Delta t),r(t+\Delta t))$ とすると、

$$h(t) = \frac{dS}{dt}$$

$$= \lim_{\Delta t \to 0} \frac{\frac{1}{2} r(t) \cdot r(t + \Delta t) \sin(\varphi(t + \Delta t) - \varphi(t))}{\Delta t}$$

$$= \frac{1}{2} \lim_{\Delta t \to 0} r(t) \cdot r(t + \Delta t) \cdot \lim_{\Delta t \to 0} \frac{\sin(\varphi(t + \Delta t) - \varphi(t))}{\Delta t}$$

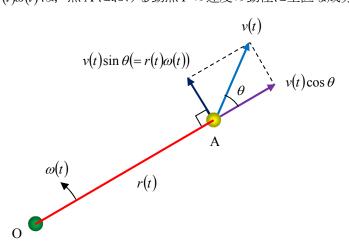
$$= \frac{1}{2} r^{2}(t) \lim_{\Delta t \to 0} \frac{\varphi(t + \Delta t) - \varphi(t)}{\Delta t}$$

$$= \frac{1}{2} r^{2}(t) \frac{d\varphi}{dt}$$

 $\frac{d\varphi}{dt}$ は時刻 t の角速度を表すから, $\frac{d\varphi}{dt} = \omega(t)$ とおくと, $h(t) = \frac{1}{2}r^2(t)\omega(t)$ ・・・②

また、①、②より、 $r(t)\omega(t)=v(t)\sin\theta$

つまり、 $r(t)\omega(t)$ は、点 A における動点 P の速度の動径に垂直な成分を表す。



B. 回転運動の勢い(角運動量)と面積速度

角運動量は回転運動の勢い

質点の質量をm, 動径(回転軌道半径)をr,

質点の速度の動径に垂直な成分(質点の軌道の接線成分)をv,とすると,

質点の回転運動の勢いは、並進運動の運動量 mv_r の項と動径rの項の積で表され、

角運動量と呼ばれる。角運動量は一般にLで表されるので、

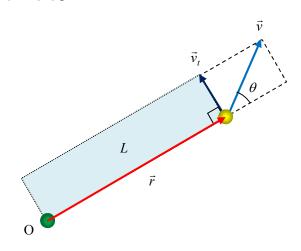
 $L = mrv_{t}$ • • ③

ただし, 角運動量は正負の値をとるものとし,

質点が中心ののまわりに反時計まわりするときを正とする。

また、質点の速度 \vec{v} と動径ベクトル \vec{r} のなす角が θ ならば、

 $L = mrv \sin \theta$ となる。



力のモーメントは角運動量を変化させる原因となる

並進運動の場合

外力 F による力積は並進運動の運動量に変化を与え,

 $m\Delta v = F\Delta t$

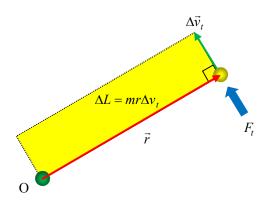
の関係が成り立つ。

回転運動の場合

動径に垂直な外力 F_t による力のモーメント $F_t r$ とそれを加えた時間 Δt の積は 角運動量に変化を与え、

 $mr\Delta v_t = F_t r\Delta t$ • • • • 4

の関係が成り立つ。



角加速度

$$\therefore mr^2 \frac{\Delta \omega}{\Delta t} = F_t r$$

$$\therefore mr^2 \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \lim_{\Delta t \to 0} F_t r$$

$$\therefore mr^2 \frac{d\omega}{dt} = F_t r$$

 $\frac{d\omega}{dt}$ は角速度の変化率を表すので、角加速度と呼ばれ、 $\frac{d\omega}{dt}$ = β とおくと、

$$mr^2\beta = F_t r$$
 • • 5

また、回転角度 θ 、角速度 ω 、角加速度 β の間に次の関係が成り立つ。

$$\beta = \frac{d\omega}{dt} = \frac{d}{dt} \left(\frac{d\theta}{dt} \right) = \frac{d^2\theta}{dt^2}$$

慣性モーメントと運動方程式

ここで、力のモーメントF,rをNとおくと、

⑤は、

$$mr^2\beta = N$$
 • • • 6

と表される。

一方、外力Fを受けて加速度 α で並進運動している質点の運動方程式は、

$$m\alpha = F$$
 ・・・⑦ (ニュートンの運動の第2法則)であり、

⑦の質量*m* は並進運動の起こし難さと止め難さ(慣性)を表すので慣性質量という。

これに対し、⑦のm と対応する⑥の mr^2 は回転運動の起こし難さと止め難さを表すので慣性モーメントといい、記号I で表される。

よって、⑥は一般に

$$I\beta = N \cdot \cdot \cdot (8)$$

と表される。

したがって、⑧は回転運動の運動方程式といえる。

角運動量保存則

角運動量L = mrv, が保存されるとき

角運動量変化 $\Delta L = mr\Delta v_t = 0$ である。

これと $mr\Delta v_t = F_t r\Delta t$ から、 $F_t r = 0$ $\therefore F_t = 0$ $(\because r \neq 0)$

また, F_{r} は動径r に働く力のモーメントN のことだから,

「N=0のとき角運動量が保存される」

ともいえる。

いずれにせよ, 質点に外力が働いていても,

その向きが中心の向きのみであれば、N=0より、角運動量が保存される。

さらに、
$$\lim_{\Delta t \to 0} \frac{\Delta v_t}{\Delta t} = \frac{dv_t}{dt} = r\frac{d\omega}{dt} = r\beta$$
, $\Delta v_t = 0$ より, 角加速度 $\beta = 0$

よって、角運動量が保存されるとき、動径は等角速度運動をする。以上より、

質点に働く力のモーメントが 0 (外力の向きが動径と平行) のとき角運動量が保存され、 このとき動径は等角速度運動をする。

角運動量が保存される運動の代表例

万有引力、点電荷による静電気力など中心力のみを受けての回転運動

補足1

③の角運動量 $L = mrv_t$ は、 $L = mrv_t = mr \cdot r\omega = mr^2\omega = I\omega$ と変形できるので、

 $L = I\omega$ とも表す。

 $L = I\omega$ と並進運動の運動量 p = mv と比較すると,

 ω と ν が対応関係にあることがわかる。

補足 2

中心力

質点に働く力の作用線が常に特定の点を通り,

力の大きさが質点とその点との距離によって決まるとき,

この力を中心力,特定の点を中心という。

質点が中心力のみで運動するとき,

つまり、力の中心のまわりの角運動量が保存され、

その結果, 軌道は一平面上にあって,

力の中心と質点を結ぶ動径が描く面積速度が一定となる。

中心力が引力の例

万有引力,原子核のまわりをまわる電子

中心力が斥力の例

陽子や α 粒子(He の原子核)が他の元素の原子核の近傍に来たとき原子核から受ける斥力

角運動量保存則と面積速度一定の法則(ケプラーの第2法則)

角運動量が保存されるとき $\Delta L = m\Delta(rv_t) = 0$ より、 $\Delta(rv_t) = 0$

これを
$$\frac{1}{2}$$
倍すると、面積速度の変化 $\Delta S = \frac{1}{2}\Delta(rv_t) = 0$ となる。

よって, 面積速度一定の法則が成り立つ。

回転運動の運動エネルギー

$$\frac{1}{2}m{v_t}^2 = \frac{1}{2}m(r\omega)^2 = \frac{1}{2}mr^2\omega^2 = \frac{1}{2}I\omega^2$$

並進運動と回転運動の比較

- I I I I I I I I I I I I I I I I I I I		
	並進運動	回転運動
慣性	質量m	慣性モーメントI
変位	変位 x	回転角 $ heta$
速度	速度 $v = \frac{dx}{dt}$	角速度 $\omega = \frac{d\theta}{dt}$
加速度	加速度 $a = \frac{dv}{dt}$	角加速度 $\beta = \frac{d\omega}{dt}$
運動方程式	F = ma	$N = I\beta$
運動量	p = mv	$L = I\omega$
運動量変化	$m\Delta v = F\Delta t$	$I\Delta\omega = N\Delta t$
仕事	Fと変位 x の内積	Nと角度変化 $ heta$ の積
運動エネルギー	$K = \frac{1}{2} m v^2$	$K = \frac{1}{2}I\omega^2$
速度 (角速度) の式	$v = v_0 + at$	$\omega = \omega_0 + \beta t$
変位(回転角)の式	$x = v_0 t + \frac{1}{2} a t^2$	$\theta = \omega_0 t + \frac{1}{2} \beta t^2$
	$v^2 - {v_0}^2 = 2ax$	$\omega^2 - \omega_0^2 = 2\beta\theta$
運動量保存則の成立条件	外力の和が 0	外力のモーメントの和が0

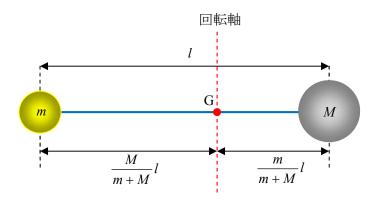
剛体の慣性モーメント

剛体の慣性モーメントIは個々の質点の慣性モーメントの和から求めることができる。

$$I = \sum m_i r_i^2$$

例1

質量が無視できる棒につながれた質量mと質量Mの質点が重心Gを通り、2物体を結ぶ線分に垂直な直線を軸として回転するとき

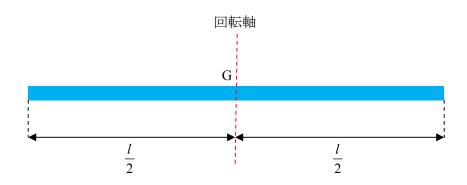


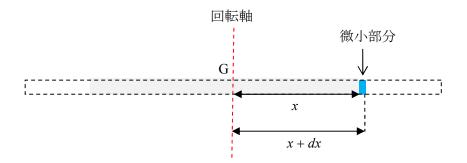
重心 G のまわり の慣性モーメント
$$I=m\bigg(\frac{M}{m+M}l\bigg)^2+M\bigg(\frac{m}{m+M}l\bigg)^2=\frac{mM}{m+M}l^2$$

$$\therefore I=\frac{mM}{m+M}l^2$$

例 2

質量M, 長さIの一様な十分細い棒の重心を通り、棒と垂直な直線を軸として回転するとき





微小部分の質量

線密度
$$\frac{M}{l}$$
より, $\frac{M}{l}(x+dx)-\frac{M}{l}x=\frac{M}{l}dx$

微小部分の慣性モーメント

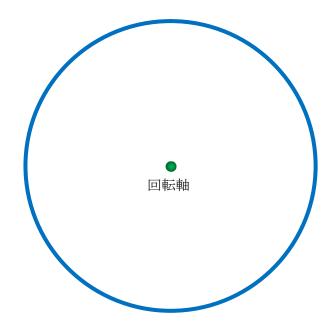
$$dI = \frac{M}{l} dx \cdot x^2 = \frac{M}{l} x^2 dx$$

棒の慣性モーメント

$$I = \int_{-\frac{l}{2}}^{\frac{l}{2}} dI = 2\int_{0}^{\frac{l}{2}} dI = 2\int_{0}^{\frac{l}{2}} \frac{M}{l} x^{2} dx = 2\left[\frac{M}{3l} x^{3}\right]_{0}^{\frac{l}{2}} = \frac{1}{12} M l^{2}$$

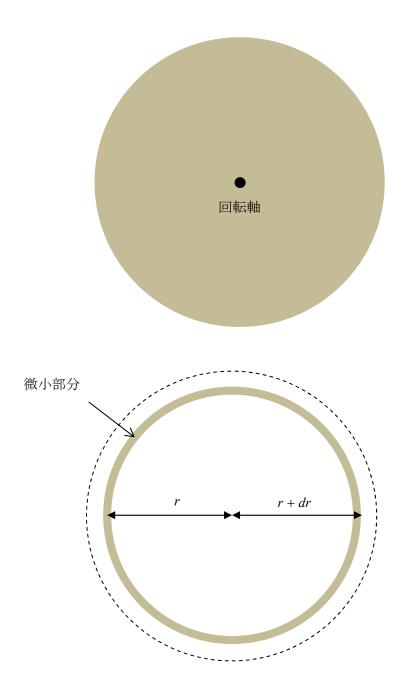
例3

質量Mの太さが無視できる半径Rの円輪の中心を通り、円輪がつくる面と垂直な直線を軸として回転するとき



$$I = \sum m_i r^2 = r^2 \sum m_i = r^2 M \qquad \therefore I = Mr^2$$

例4: 半径<math>R, 質量Mの円板の中心を通り、円板と垂直な直線を軸として回転するとき



微小部分の質量

面密度
$$\frac{M}{\pi R^2}$$
 を ρ とおくと,

$$\pi \rho (r+dr)^2 - \pi \rho r^2 = 2\pi \rho r dr + \pi \rho (dr)^2$$

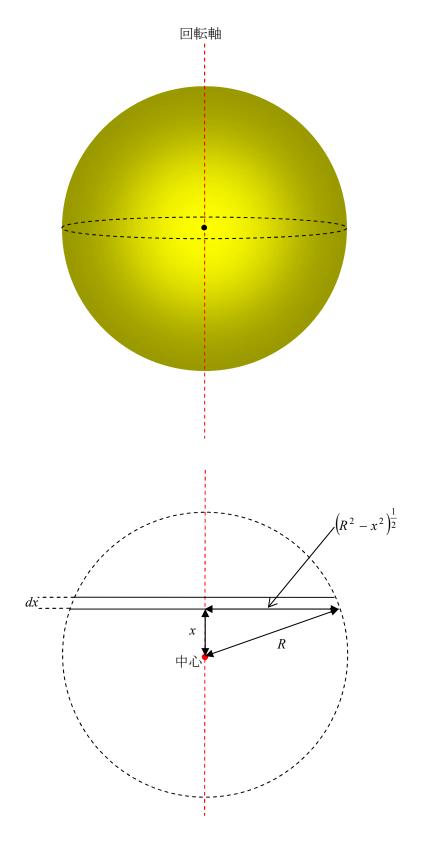
 $(dr)^2$ の項は非常に小さいので無視してよい。よって、微小部分の質量= $2\pi \rho r dr$ 微小部分の慣性モーメント

太さ dr が無視できる円輪と見なしてよいから,

例2より,
$$dI = 2\pi \rho r dr \cdot r^2 = 2\pi \rho r^3 dr$$

円板の慣性モーメント

例5 質量M, 半径Rの一様な球の中心を通る直線を軸として回転するとき



球を厚さdxの十分薄い円板を組み合わせたものと見なし、円板の密度 $\frac{M}{\frac{4}{3}\pi R^3}$ を ρ とおく。

中心からの距離がxの位置にある円板の質量

$$\pi \left\{ \left(R^2 - x^2 \right)^{\frac{1}{2}} \right\}^2 dx \cdot \rho = \pi \rho \left(R^2 - x^2 \right) dx$$

円板の慣性モーメント

例 4 より、
$$dI = \frac{1}{2}\pi\rho(R^2 - x^2)dx \cdot \left\{ (R^2 - x^2)^{\frac{1}{2}} \right\}^2 = \frac{1}{2}\pi\rho(R^2 - x^2)^2$$

球の慣性モーメント

$$I = 2\int_0^R dI$$

$$= 2\int_0^R \frac{1}{2} \pi \rho (R^2 - x^2)^2 dx$$

$$= \pi \rho \int_0^R (x^4 - 2R^2 x^2 + R^4) dx$$

$$= \pi \rho \left[\frac{1}{5} x^5 - \frac{2}{3} R^2 x^3 + R^4 x \right]_0^R$$

$$= \frac{8}{15} \pi \rho R^5$$

$$I = \frac{2}{5}MR^2$$