過マンガン酸イオンの半反応式と溶液の液性

硫酸酸性下の半反応式
\[
\text{MnO}_4^- (\text{赤紫色}) + 8\text{H}^+ + 5\text{e}^- \rightarrow \text{Mn}^{2+} (\text{薄桃色〜無色}) + 4\text{H}_2\text{O}
\]

中・塩基性下の半反応式
\[
\text{MnO}_4^- (\text{赤紫色}) + 2\text{H}_2\text{O} + 3\text{e}^- \rightarrow \text{MnO}_2 \downarrow (\text{黒色沈殿}) + 4\text{OH}^-
\]

解説

\text{MnO}_4^- は金属元素と非金属元素からなるイオンだから,
マンガンイオン Mn^{7+} と酸化物イオン O^{2-} がイオン結合している。

硫酸酸性下

\[\text{H}^+ が十分存在するので, \text{Mn}^{7+} とイオン結合している O^{2-} 全部がH}^+ と結合し,
一気に H_2O となって, \text{Mn}^{7+} から離れる。
\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \quad \cdots \cdots \text{①}
\]
\[\text{Mn}^{7+} は水中で最も安定な Mn^{2+} に戻ろうと, 還元剤から電子を奪い取る。
\text{Mn}^{7+} + 5\text{e}^- \rightarrow \text{Mn}^{2+} \quad \cdots \cdots \text{②}
\]
\[① + ② より,
\text{MnO}_4^- (\text{赤紫色}) + 8\text{H}^+ + 5\text{e}^- \rightarrow \text{Mn}^{2+} (\text{薄桃色〜無色}) + 4\text{H}_2\text{O}
\]

中・塩基性下

\[\text{H}^+ (\text{H}_2\text{O の電離由来}) の濃度が非常に小さいので,
\text{Mn}^{7+} とイオン結合している O^{2-} が少しずつ H_2O となって Mn^{7+} から離れていく。
この過程で, 水に不溶な MnO_2 が生成蓄積し, 沈殿する。
4\text{H}_2\text{O} \rightleftharpoons 4\text{H}^+ + 4\text{OH}^- \quad \cdots \cdots \text{③}
\text{MnO}_4^- + 4\text{H}^+ \rightarrow \text{MnO}_2^{3+} + 2\text{H}_2\text{O} \quad \cdots \cdots \text{④}
\text{MnO}_2^{3+} + 3\text{e}^- \rightarrow \text{MnO}_2 \downarrow \quad \cdots \cdots \text{⑤}
\[③ + ④ + ⑤ より,
\text{MnO}_4^- (\text{赤紫色}) + 2\text{H}_2\text{O} + 3\text{e}^- \rightarrow \text{MnO}_2 \downarrow (\text{黒色沈殿}) + 4\text{OH}^-
\]