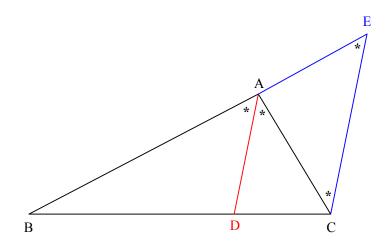
三角形の角の二等分線と比

三角形の内角の二等分線と比

 \triangle ABC の \angle A の二等分線と点 BC との交点 D は、辺 BC を AB: AC に内分する。

すなわち BD:DC=AB:AC



証明

点 C を通り AD と平行な直線と直線 AB の交点を E とすると,

 $AD//EC \downarrow \emptyset$, $\angle CAD = \angle ACB$, $\angle BAD = \angle AEC$

 $\exists h \geq \angle BAD = \angle CAD \neq \emptyset$, $\angle ACE = \angle AEC$

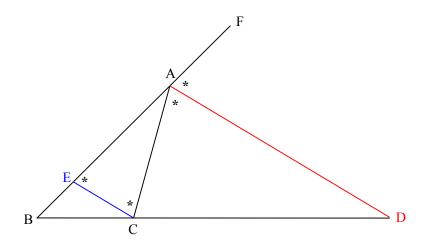
よって, AE = AC ・・・①

また, 平行線と線分の比より, BD: DC=BA: AE ・・・②

ゆえに、①と②より、BD:DC=AB:AC

三角形の外角の二等分線と比

 $AB \neq AC$ である $\triangle ABC$ の頂点 A における外角の二等分線と直線 BC との交点 D は、 D BC を AB : AC に外分する。



証明

AB=ACのとき

頂点Aにおける外角の二等分線と半直線BAのなす角と $\angle B$ は同位角の関係にあり、AB=ACのとき、これら2つの角の大きさが等しくなる。

よって、頂点Aにおける外角の二等分線は直線BCと平行となり、交わらない。

AB≠ACのとき

点 C を通り AD と平行な直線と辺 AB の交点を E とすると、

 $AD//EC \downarrow V$, $\angle CAD = \angle ACE$, $\angle FAD = \angle AEC$

 $\angle h \geq \angle CAD = \angle FAD \downarrow \emptyset$, $\angle ACE = \angle AEC$

よって, AE = AC ・・・①

また、平行線と線分の比より、BD:DC=BA:AE ・・・②

ゆえに、①と②より、BD:DC=AB:AC